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Abstract
Diffusion of Brownian particles in a periodic channel is investigated in the presence of a tilted
spatially periodic potential. Reduction of spatial dimensionality from two or three dimensions
to an effective one-dimensional system entails the appearance of not only an entropic barrier but
also an effective diffusion coefficient. It is found that diffusion exhibits striking features which
are different from those observed in the previous cases. The interplay between the potential
barriers and entropic barriers makes the phenomena richer. Remarkably, two temperature values
exist at which the Peclet number takes its maximum.

1. Introduction

The phenomenon varying from the diffusion of ions and
macromolecular solutes through the channels in biological
membranes [1], transport in zeolites [2] and nanostructures of
complex geometry [3], controlled drug release [4] to diffusion
in man-made periodic porous materials [5] can be considered
as constrained transport. Motion in these systems can be
induced by imposing different concentrations at the ends of the
channel, or by the presence of external driving forces supplying
the particles with the energy necessary to proceed.

Diffusion of Brownian particles in tilted periodic
potentials has been studied in a number of papers [6–11].
Reimann et al [6, 7] found that the diffusion may be
greatly enhanced compared to free thermal diffusion, with
an enhancement of up to 14 orders of magnitude. Dan
and Jayannavar [8] found that nonhomogeneous dissipation
can induce enhancement and suppression of diffusion as a
function of temperature. Recently, Heinsalu et al [11] found
the appearance of the second resonant peak of the diffusion
coefficient versus the driving force in a dimer.

The above studies on diffusion have revolved around the
energy barrier. However, in some cases, such as soft condensed
matter and biological systems, the entropy barriers should
be considered [12–24]. Brownian particles, when moving
in a confined geometry, instead of diffusing freely in the
host liquid phase, undergo a constrained motion, where their
kinetic behavior could exhibit peculiar behavior. Recently,
Reguera et al [19] used the mesoscopic nonequilibrium
thermodynamics theory to derive the general kinetic equation

of the motor system and analyzed in detail the case of diffusion
in a domain of irregular geometry in which the presence of the
boundaries induces an entropy barrier when approaching the
dynamics by a coarsening of the description. In their recent
work [15] they studied the diffusion of Brownian particles
moving in a symmetric channel with a biased external force
and found that a regime existed where the effective diffusion
coefficient in the presence of entropic barriers decreases with
temperature which is different from that in the case of energy
barriers.

The presence of entropic barriers accompanied by energy
barriers may induce a peculiar phenomenon in particle
diffusion. How Brownian particles diffuse in entropic
potentials accompanied by energy potentials becomes an
interesting problem. In the present work, we extend the
previous work on diffusion to the case of periodic entropic
barriers accompanied by periodic longitudinal energy barriers.
We focus on finding how the interplay between the energy
barriers and entropic barriers affects the particle diffusion.

2. Models and methods

In this paper, we study the diffusion of Brownian particles in
a periodic channel with a tilted periodic potential. The over-
damped dynamics can be described by the following Langevin
equations written in a dimensionless form [12–14, 22–24]:

η
dx

dt
= −∂U(x)

∂x
+ √

ηkBT ξx(t), (1)
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Figure 1. Schematic diagram of a channel confining the motion of
Brownian particles under a tilted periodic potential. The upper part is
the tilted periodic potential U(x) = −Fx + sin(2πx/L + θ) with a
barrier height of �U(x). The shape of the channel is described by its
half-width ω(x) = a sin( 2πx

L ) + b.

(This figure is in colour only in the electronic version)

η
dy

dt
= √

ηkBT ξy(t), (2)

η
dz

dt
= √

ηkBT ξz(t), (3)

where t is the time, x, y, z are the three-dimensional
coordinates, kB is the Boltzmann constant, T is the absolute
temperature and η is the viscous friction coefficient. ξx,y,z (t)
is the Gaussian white noise with zero mean and correlation
function: 〈ξi (t)ξ j (t ′)〉 = 2δi, jδ(t − t ′) for i, j = x, y, z. 〈. . .〉
denotes an ensemble average over the distribution of noise.
δ(t) is the Dirac delta function. The shape of the channel is
described by its half-width (figure 1):

ω(x) = a sin

(
2πx

L

)
+ b, (4)

where a is the parameter that controls the slope of the tube and
b − a is the parameter that determines the half-width at the
bottleneck.

U(x) is the tilted periodic potential (figure 1):

U(x) = −Fx + U0(x), (5)

where F is a constant force and U0(x) is a symmetric periodic
potential with periodicity L:

U0(x) = sin

(
2π

L
x + θ

)
, (6)

where θ is the phase difference. The channel is assumed to
be delimited by rigid, smooth walls, which means that it is
impossible for the particles inside the channel to move out of
the channel through the channel wall.

The motion equation of Brownian particles moving along
the axis of the 3D (or two-dimensional (2D)) channel can

be correctly described by the Fick–Jacobs equation which is
derived from the 3D (or 2D) Smoluchowski equation after
elimination of y and z coordinates by assuming equilibrium
in the orthogonal directions [18, 20]. The reduction of the
coordinates may involve not only the appearance of an entropic
barrier but also the effective diffusion coefficient. When
|ω′(x)| < 1, the x-dependent diffusion coefficient is [19]

D(x) = D0

[1 + ω′(x)2]α , (7)

where D0 = kBT/η and α = 1/3, 1/2 for the 2D and 3D
cases. The prime stands for the derivative with respect to the
space variable x .

In the presence of longitudinal drive F and the external
periodic potential, the dynamics of Brownian particles
moving along the axis of the channel can be described
by [14, 19, 21–24]

∂ P(x, t)

∂ t
= ∂

∂x

[
D(x)

∂ P(x, t)

∂x
+ D(x)

kBT

∂ A(x, t)

∂x
P(x, t)

]

= −∂ J (x, t)

∂x
, (8)

where we define a free energy A(x, t) := E − T S = U(x) −
T kB ln h(x); here E = U(x) is the energy, S = kB ln h(x) the
entropy, h(x) the dimensionless width 2ω(x)/L in the 2D case
and the dimensionless transverse cross section π[ω(x)/L]2 of
the tube in the 3D case. J (x, t) is the probability current
density. P(x, t) is the probability density for the particle at
position x and time t . It satisfies the normalization condition∫ L

0 P(x, t) dx = 1 and the periodicity condition P(x, t) =
P(x + L, t).

The stationary average velocity 〈v〉 can be defined by the
relation

〈v〉 = 〈ẋ〉 = lim
t→∞

〈x(t)〉
t

, (9)

and the dispersion of the position can be characterized by the
effective diffusion coefficient defined as

Deff = lim
t→∞

〈x2(t)〉 − 〈x(t)〉2

2t
, (10)

where 〈· · ·〉 is the average over all realizations of the thermal
noise and initial condition.

Based on equation (8), we can obtain the stationary
average velocity 〈v〉 and the effective diffusion coefficient Deff

by following the method in [6, 7, 25] (see [6, 7] and references
therein):

〈v〉 = L J = L(1 − e−F L/kB T )
∫ L

0 dx I (x)
, (11)

Deff = L2
∫ L

0 dx
∫ x

x−L dz D(z)
D(x)

eA(x)/kB T

eA(z)/kB T [I (z)]2

[∫ L
0 dx I (x)]3

, (12)

where

I (x) = eA(x)/kB T

D(x)

∫ x

x−L
dy e−A(y)/kB T . (13)

Another interesting quantity is the efficiency of the
diffusive transport which depends on both the average velocity
and diffusion coefficient. Therefore, here we introduce this
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Figure 2. Dependence of the ratio Deff/D0 on the external driving
force F at D0 = kBT = 0.1, a = 1/2π , b = 1.02/2π and L = 2π
for three cases: (a) potentials and entropic barriers, (b) only
potentials and (c) only entropic barriers.

Figure 3. The effective diffusion coefficient versus D0 at F = 1.0,
a = 1/2π , b = 1.02/2π and L = 2π for two cases: only entropic
barriers and only energy barriers.

quantity—the Peclet number—to measure the efficiency of the
diffusive transport and defined it as [9, 10, 26]

Pe = 〈v〉L

Deff
. (14)

The Peclet number can either be enhanced by an increase
of net current (i.e. the stationary mean velocity) and/or by
a decrease of the effective diffusive diffusion, resulting in a
maximal value.

3. Results and discussion

For simplicity, we take kB = 1.0, η = 1.0 through this paper
and the channel wall is assumed to have a sinusoidal profile.

In figure 2 we plot the ratio Deff/D0 as a function of
external force F for three cases: (a) energy barriers with
entropic barriers, (b) only potentials and (c) only entropic
barriers. It can be seen from the figure that the effective
diffusion coefficient exhibits a maximum as a function of
F for three cases. When F → ∞ the free energy A(x)

barriers vanish. Then the diffusion becomes free (Deff/D0 →

Figure 4. The ratio of Deff and D0 versus external force F for
different phase difference at D0 = 0.1, a = 1/2π , b = 1.02/2π and
L = 2π .

1). For the case with only entropic barriers, when F is
small, the entropic barrier is slightly smaller compared to the
temperature. So, it can immediately and dramatically increase
with F . However, for the case with energy barriers, the
effective diffusion coefficient will go to zero for small values
of F .

Figure 3 shows the effective diffusion coefficient as
a function of temperature for two cases: only entropic
barriers and only energy barriers. For the case with only
energy barriers, the diffusion increases with temperature
monotonically. At low temperature, the particles cannot
pass the barriers and the diffusion coefficient goes to zero.
The effective diffusion coefficient versus temperature for the
case with entropic barriers is different from that with energy
barriers. Temperature dictates not only the thermal noise
intensity but also the height of the entropic barriers. The
competition between these two factors will induce a peak and
valley in the Deff–T profile. Therefore, there exists a region of
temperature in which the diffusion coefficient decreases as the
temperature increases.

Figure 4 shows Deff/D0 as a function of the constant force
F for different phase differences at D0 = 1.0. From the figure
we can see that there exists a value of F at which Deff/D0

takes its maximum value. The height and position of the peak
is strongly influenced by the phase difference. Therefore, one
can control the diffusion by changing the phase difference.

In figure 5, the dependence of Deff on the temperature T is
illustrated for different phase differences θ = 0, π/2, π, 3π/2
at F = 1.0. The effective diffusion coefficient increases
monotonically with temperature as expected. When the
temperature is very low compared to the height of the free
energy barriers, Brownian particles are trapped in the wells.
So, there is no diffusion until the temperature is high enough to
make the Brownian particles escape from the wells. For θ = 0,
the curve increases dramatically with temperature, whereas, for
θ = π , Deff increases slowly with temperature compared to
the case θ = 0. Remarkably, even at low temperature Deff

increases linearly with temperature for θ = π/2 and 3π/2
which denotes the free diffusion. In the two cases the entropic
barriers and energy barriers will cancel each other.
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Figure 5. The effective diffusion coefficient versus temperature for
different phase differences at F = 1.0, a = 1/2π , b = 1.02/2π and
L = 2π .

The curves of Peclet number versus temperature for
different phase differences are depicted in figure 6(a) at F =
1.0. The Peclet number is extremely sensitive to noise intensity
and phase difference. For the case θ = 0, the Peclet number
versus temperature has two maxima. The appearance of the
two peaks is due to the appearance of double-barrier behavior
in the free energy. The first peak is very sharp and sensitive
to the temperature. But the second one is more broad and
slightly higher than the first one. The other curves possess
a single peak. This phenomenon is largely caused by the
shape of free energy which is influenced by temperature and
phase difference. In figure 6(b), the influence of a change of
L on the results for θ = 0 and F = 1.0 is shown. The
increase of L leads to an enhancement in the second peak
and a suppression or an enhancement in the first peak. The
reason for this phenomenon is that the long periodicity of the
tube can make the tube more straight and facilitate a particle
moving forward along the tube. The dependence of Pe on the
temperature for 2D and 3D at θ = 0, F = 1.0 is depicted in
figure 6(c). The results of the 2D case are the same as that of
the 3D case. So, the influence of dimension on the results can
be neglected.

In order to illustrate the change from double peaks
to a single peak in the Peclet number versus temperature
(see figure 6), the free energy potentials A(x) along the x
coordinate are plotted in figure 7 for different phase differences
at kBT = 0.03 (the first peak position), kBT = 0.14 (the
minima position) and kBT = 0.36 (the second peak position).
For the case θ = 0, the free energy A(x) exhibits a double-
barrier behavior at kBT = 0.36 and 0.14 (see figure 7(d)).
However, for the other case, it exhibits single-barrier behavior
rather than double-barrier behavior. So, we can conclude that
the first peak in the Peclet number versus kBT is induced by
the main barriers. To obtain the second peak in the Peclet
number, the additional potential barrier must be high enough
(kBT = 0.36). However, when the additional barrier is not
high enough and steep (kBT = 0.14), it may hinder the current
and facilitate the effective coefficient, and then reduce the
efficiency.

In figure 8 we plot the critical force corresponding to the
maximal effective diffusion coefficient and the height of the
peak as a function of θ at D0 = 0.1. The peak height and
position are very sensitive to the phase difference. The critical
force can be shifted from 5 to 8.2. The peak height can be
shifted from 2.8 to 5.8. We can see that the phase difference
corresponding to the maximal (minimal) effective diffusion
coefficient is the same as the phase difference at which the
critical force is maximum (minimum). Another feature is that
a region of θ exists where the critical force decreases, while the
peak height remains steady.

4. Conclusions

In this paper we have investigated the diffusion in a tilted
periodic potential with entropic barriers. Its striking features
radically differ from those occurring in the cases only with
energy barriers or entropic barriers. The interplay between
the energy barriers and entropic barriers makes the phenomena
richer. In the presence of entropic potentials together with
energy potentials, the effective diffusion coefficient as a
function of the external force has maxima like those in the
case with only entropic barriers or energy barriers. The
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Figure 6. The Peclet number as a function of temperature at F = 1.0, a = 1/2π and b = 1.02/2π . (a) For different phase differences; (b) for
different spatial periodicity L at the phase difference θ = 0; (c) for 2D and 3D at phase difference θ = 0.
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Figure 7. The free energy A(x) along the x coordinate for different phase differences θ = 0, π/2, 3π/4, π and 3π/2 at a = 1/2π ,
b = 1.02/2π and L = 2π : (a) kBT = 0.03; (b) kBT = 0.14; (c) kBT = 0.36; (d) the free energy A(x) along the x coordinate for different
temperatures kBT = 0.03, kBT = 0.14 and kBT = 0.36 at the phase difference θ = 0.

Figure 8. The maximum ratio Deff/D0 and critical external force
Fcritic versus the phase difference θ for D0 = 0.1, a = 1/2π ,
b = 1.02/2π and L = 2π .

additional external potentials can largely enhance the effective
diffusion coefficient compared to the case only with entropic
barriers, though the effective diffusion coefficient is slightly
lower than that in the case with only energy potentials (see
figure 2). In the case with the energy and entropic potentials,
the effective diffusion coefficient increases monotonically with
temperature as expected. The effective diffusion coefficient
and Peclet number are very sensitive to the shape of free energy
and temperature. The peak value of the effective diffusion
coefficient and its position (critical force) are sensitive to the
phase difference θ which influences the shape of A(x). The
Deff may be higher than that in the case with only energy

potentials with a properly chosen θ . Another important feature
we found is that two temperature values exist at which the
Peclet number takes its maximum. The change of phase
difference makes the free energy A(x) deformation. Its
shape can be shifted from double-peak behavior to single-
peak behavior. Clearly, the model is too simple to provide a
realistic description of real systems: however, the results we
have presented may have applications in many processes, such
as diffusion of ions and macromolecular solutes through the
channels in biological membranes [1], transport in zeolites [2]
and nanostructures of complex geometry [3], controlled
drug release [4] and diffusion in man-made periodic porous
materials [5].
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